ORNL/LTR-2020/40

Optimizing the Accelerated Recursive
Doubling Algorithm for Block Tridiagonal

Systems of Equations

Muktaka Joshipura
Sudip K Seal

Approved for public release.
Distribution is unlimited.

August 7, 2020

OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE US DEPARTMENT OF ENERGY

DOCUMENT AVAILABILITY
Reports produced after January 1, 1996, are generally available free via US Department of
Energy (DOE) SciTech Connect.

Website: http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the public
from the following source:

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22161

Telephone: 703-605-6000 (1-800-553-6847)
TDD: 703-487-4639

Fax: 703-605-6900

E-mail: info@ntis.gov

Website: http://classic.ntis.gov/

Reports are available to DOE employees, DOE contractors, Energy Technology Data Ex-
change representatives, and International Nuclear Information System representatives from the
following source:

Office of Scientific and Technical Information

PO Box 62

Oak Ridge, TN 37831

Telephone: 865-576-8401

Fax: 865-576-5728

E-mail: report@osti.gov

Website: http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal lia-
bility or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or rep-
resents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not nec-
essarily constitute or imply its endorsement, recommendation, or fa-
voring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

 http://www.osti.gov/scitech/
mailto:info@ntis.gov
http://classic.ntis.gov/
mailto:reports@osti.gov
http://www.osti.gov/contact.html

ORNL/LTR-2020/40

Computer Science and Mathematics Division

Optimizing the Accelerated Recursive Doubling Algorithm for Block Tridiagonal Systems of Equations

Muktaka Joshipura
Sudip K. Seal

Date Published: August, 2020

Prepared by
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, TN 37831-6283
managed by
UT-Battelle, LLC
for the
US DEPARTMENT OF ENERGY
under contract DE-AC05-000R22725

CONTENTS

LISTOF FIGURES e e s e e i
1. Introduction e e e e e ii
1.1 L, Dj,and U; matriCes v v v v i i e e e e e e e 1l

1.2 xjand b; VeCtors e e e e 1l

1.3 X;vectorsand B; MmatriCeS oo e e e e e e e e e e e 1ii

1.4 S;matriCes e e e e e e e 1ii

1.5 Ciand FimatriCes o o vt e e iv

1.6 Q;MatriCeS o o i i e e e e e e e e e iv

1.7 E;matriCes o v i o e e e e e e v

1.8 Z;matriCeS e e vi

2. Original Algorithm e ix
2.1 Independentphase. e ix

2.2 Dependentphase e e ix

3. Algorithm Setup e e e ix
3.1 Block row assignment and indexing oL e ix

3.2 Shared-memory threading X

3.3 Registers and Instructions oL e X

4. OptmizZationS v v e e e e e e e e e e e e e e e e xi
4.1 Optimizations in the Independent Phase oL xi
4.1.1 C;matrix COMPression v v v v it e e e e e e e e e e xi

4.1.2 Q; matrix COMPresSiON v v v v v vt e e e e e e e e e e e xi

413 Q7 lcompression xii

4.2 Optimization in the Dependent Phase xiii
421 EBvaluating x; e X1ii

4.3 Shared-memory parallel prefix Xiv
4.3.1 Optimizations for in-place prefix operations XVi

4.3.2 Optimizations for out-of-place prefix operations XViii

S. Program e XX
5.1 Independent Phase Part1 XX
5.2 Independent Phase Part2 XXi

5.3 Independent Phase Part3 XXii
5.4 DependentPhase Part 1 xxiii

5.5 DependentPhase Part2 XXiii
5.6 DependentPhase Part3 XXV

6. Time Complexity Analysis and Comparison v v v v v XXV
6.1 Naiveimplementation L e e XXV
6.1.1 Independentphase XXVi

6.1.2 DependentPhase XXVi

6.2 Optimized implementation XXVvil
6.2.1 Independentphase XXvil

6.2.2 Dependentphase XXVvil

6.3 Comparison e e e e e e e e e e e e e e XXVii
6.3.1 IndependentPhase xxviii

6.3.2 DependentPhase XXviii

7. Memory Complexity Analysis and Comparison xxviii

7.1 Naiveimplementation e xxviii
7.2 Optimized implementation XXVviil
7.3 CompariSOn e e e e e e e e e xxviii
7.3.1 IndependentPhase XXiX

7.3.2 DependentPhase XXixX

8. Shared-memory threading speedups XXiX
8.1 Independentphase. XXixX
8.2 Dependentphase e XXX
9. Experimentsand Results XXX
10. Conclusions e e e e e XXxi

2

LIST OF FIGURES

In-place Shared-Memory Parallel Prefix . .
Out-of-place Shared-Memory Parallel Prefix

ABSTRACT

The need to solve block tridiagonal systems with hundreds or thousands of right-hand sides for the same
block tridiagonal matrix is common in a variety of disciplines. To meet this need, the Accelerated
Recursive Doubling Algorithm was developed. After a right-hand side independent phase, the algorithm
allows for the quick, online calculation of solutions for different right-hand sides. In this work, we present
methods to optimize the Accelerated Recursive Doubling Algorithm in memory usage and computation
time in a hybrid parallelization model. The right-hand side independent phase of the naive implementation
takes > % the amount of memory required to store the tridiagonal matrix, while our implementation
reduces the fraction to ~ % The right-hand side dependent phase of the naive implementation takes > 6
times the amount of memory required to store the right-hand side, while our implementation reduces the
fraction to ~ 3. The computation time for the independent phase is reduced to ~ % times that of the naive
implementation, while the computation time for the dependent phase is reduced to ~ g. With increasing
numbers of shared-memory threads ¢ on every distributed processing element, we have O(qg) theoretical
speedup.

1. Introduction

A block tridiagonal system is a linear system Ax = b such that A is a block tridiagonal matrix. A block
tridiagonal matrix is a block matrix such that the only non-zero blocks are on the block diagonal or
adjacent to the main block diagonal.

To describe the dimensions of the matrix A, we define two parameters M and N. M refers to the width of
each square block. N refers to the number of block rows.

1.1 L, D;, and U, matrices

In order to reference specific blocks, we label each block in the block-tridiagonal matrix as either being
‘lower’ (L), ‘diagonal’ (D), or ‘upper’ (U). We distinguish the blocks on each block row by a block-row
index. Therefore, the layout of A is as follows:

D U 0 o o oo 0
Ly Dy Uy 0 - - 0

A=|0 L3 D;s U; O --- O], (D
0O - o+ oo oo Ly Dy

For convenience in using block-row indices, we define L; = Uy = 1.

ii

1.2 x; and b, vectors

We also section the solution vector x and the right-hand side vector b into smaller M X 1 vectors, one for
each of N block rows, laid out as follows:

X1 bl
x:l;‘ b=|:|.)
XN bN

Again, for convenience in using block-row indices, we define xg = xy4+1 = 0.

1.3 X, vectors and B, matrices

Both the Accelerated and the non-accelerated Recursive Doubling Algorithms rely on a method of solving
for x;+1 once we have obtained a solution for x; and x;_;, presented in [1]. This is done by multiplying a
matrix B;—determined from L;, D; and U;—with a vector X;,—determined from x; and x;_i.

X; and B; were defined for 1 < i < N such that

Xi -U7'Di -U7'Li Ui'b;
X,': Xi—1 Bi: 1 0 0 . (3)
1 0 0 1

We notice that the construction of B; requires the following assumption to be made:
Assumption 1. For all 1 <i < N, the matrix U; is invertible.

The property that allows us to determine x;;; from x; and x;_; is stated as a lemma as
Lemma 1. Forall 1 <i< N, we have X;.1 = B;iX;.

The proof of this lemma is found in [1].

This lemma tells us that once x; is known, we can pack x; and x;_; = xp = 0 into X, calculate X, = B X|,
and extract x, from the result. We can then calculate every subsequent x; in serial, thus obtaining the
entirety of the solution vector x.

1.4 S, matrices

The property described in Lemma 1 yields the possibility of determining the value of all x; in parallel once
x1 is determined. This is used in both versions of the Recursive Doubling Algorithms. In order to do this, a
prefix product of B;, labeled §;, is calculated, which is then multiplied with X; to obtain X;. This property
is presented in [1].

The prefix product §; = B;B;_; ... Bj is defined recursively for 1 <i < N as

B i=1
S; = : (4)
B,‘Si_l i>1

The property that allows X; to be calculated from X using S; is stated as a theorem as

iii

Theorem 1. Forall 1 <i < N, we have X;,1 = §;X.
This property follows trivially from the definition of x; in Equation 4 and the property of B; in Lemma 1.

The method for determining x;, and by extension X as used in both versions of the Recursive Doubling
Algorithm is
-IS)1s Y
Theorem 2. x; = —[S\']7'S)\ and so X, = 0
1

A proof for this theorem can be found in [2].

However, the use of this property relies on the assumption that
Assumption 2. S}! is invertible

1.5 C; and F; matrices

The Accelerated Recursive Doubling Algorithm presented in [2] accelerates the computation of solving for
x for multiple right-hand sides b by separating the computation dependent on b (right-hand side dependent)
and the computation independent of the right-hand side. In order to do this, B; is separated into two
matrices, one right-hand side independent (C;), and one right-hand side dependent (F;).

To be precise, for all 1 <i < N, we decompose B; into C; and F; as

-U7'D; -U7'L; 0 0 0 U'b
Ci=| 1 0 0 Fi={0 0 0 (5)
0 0 1 00 0

C; and F; matrices have the following properties that help simplify expressions involving their products, as
presented in [2].

Lemma 2. For 1 <i<Nand1< j< N, we have F;F; = 0.

Lemma3. For1 <i<Nand1< j< N, we have F;C; = F,.

These lemmas are presented without proof because they can be verified trivially.

1.6 Q; matrices

In the Accelerated Recursive Doubling algorithm, S; is constructed by combining a result that only
depends on A, and a result that only depends on the right-hand side b. The result that only depends on A is
the Q; matrix, which is the prefix product of C; matrices.

The prefix product Q; = C;C;_; ...Cj is defined recursively for 1 <i < N as

(1 l:]
{CiQi—l i>1 ©

Q; matrices have the following property that helps simplify expressions, stated as

v

Lemmad. For1 <i<Nand1< j< N, we have F;Q; = F,.

This lemma follows trivially from the definition of Q; and the property in Lemma 3.

1.7 E; matrices

The right-hand side dependent result that is used to construct S; in the Accelerated Recursive Doubling
Algorithm is the E; matrix, defined recursively for 1 <i < N as:

F i=1
E; = . (7
Fi+Cl'El'_1 i>1

Using this formulation, we can start from E| and determine all subsequent E; using the recursive
formulation. This formulation of E; is simpler but equivalent to the original formulation in [2].

A property that helps simplify expressions is
Lemmas. For 1 <i<Nand1 < j< N, we have F;E; = 0.

Proof. We can prove this property by induction.
Let 1 <i < N be a valid index.
Base case: j =1
By Lemma 2, we have
FiFi=0
Inductive step

Let the lemma be true for values of j up to and including k. This means that F;E; = 0. We have to prove
that F;Er.1 = 0.

Since k > 1, we have k + 1 > 2. So, by the definition of E;, we have Eyy1 = Fiy1 + Cry1Ex.
FiEpy1 = Fi(Fi1 + Crr1 Ep) = (FiFiy1) + (FiCre1) Ex

=0+ F;E; (By Lemma 2 and 3)
= 0 (By the inductive hypothesis).

Using the value of Q;, determined during the right-hand side independent computation, and the value of E;,
determined during the right-hand side dependent computation, we can construct the value of S; using this

property.
Theorem 3. Forall1 <i < N, we have Q; + E; = §,.

Proof. We can prove this property using induction.

Base case: i = 1

By definition of S;, Q; and E;, we have
S1=Bi 01 =0 E| =F,

Therefore,
Q1+E1 =C1+F1 ZBl ZSl

Inductive step

Let the theorem be true for all i up to and including k. Therefore, Sy = Ox + Ex. We have to prove that
Sir1 = Ok + Egq1.

By definition of C; and F;, we have Qi1 = Crs1 + Fry1-

By definition of §; and the inductive hypothesis, we have

Skl = Biy1Sk = (Cr1 + Fre1)Sk = (Cry1 + Frp1)(Qk + Ep).

Expanding, we get

(Cr1 + Fre1)(Qk + Ep) = Cp1 Ok + Cr1 Ex + Fr1 Ox + Fry1 Ex
= QOi+1 + Crp1Ex + Fie1 + 0
(Using Lemma 4 and Lemma 5)

Since k > 1, we know that k + 1 > 1. So, we have Ey;| = Cri1 Ex + Fi41. Plugging in the value of Eyy 1, we
get:
Sk+1 = Ok+1 + Egr1.

We have thus shown the inductive step to be true, which proves the theorem. O

1.8 Z; matrices

The original formulation of E; allows for the calculation of all E; in parallel. For this formulation, we must
define another kind of matrix, Z;, defined for 1 <i < N as:

i
Zi=) O'Fi. @®)
k=1
Further, we define Zy = 0.
The existence of Z; therefore depends on the invertibility of Qy for all 1 < k < i. In order to get the most

minimal set of assumptions required to ensure this property, we investigated the conditions in which Q; are
invertible. We discovered the following property.

Lemma 6. For 1 <i < N, the matrix Q; is invertible if and only if Cy, ..., C; are invertible.

vi

Proof. By the properties of the determinant and the definition of Q; given in Equation 6, we have

det 0, = l_[det C; (9)
k=1

Part 1: Cy,...,C; are invertible = (); is invertible

If Cy,...,C; are invertible, then det Cy, ..., det C; are non-zero. This means that the product of the
determinants is also nonzero. Therefore, by Equation (9), we know that det Q; # 0, and so Q; is invertible.

Part 2: Not all of Cy, ..., C; are invertible = (Q; is not invertible
Let C; € {Cy,...,C;} such that it is a non-invertible matrix. Then, detC; = 0. By Equation (9), we know
that det Q; = 0, and so Q; is not invertible. O

Since the invertibility of Q; matrices is conditional on the invertibility of C; matrices, we investigated the
invertibility of C; matrices. We discovered the following property.

Lemma 7. Given that U, is invertible, for 1 <i < N, the matrix C; is invertible if and only if L; is
invertible.

Proof.
Part 1: L; is invertible = C; is invertible

A matrix is invertible if and only its inverse exists. Let L; be invertible. Therefore L~! exists and so does
the matrix

0 I 0
D=|-L7'U; -L'D; 0.
0 0 1
Now, we have
0 I 0][-U7'D; -U7'Li O
DC; =|-L7'U; -L'D; 0 I 0 0l=1
0 0 1 0 0 1

Therefore D is the inverse of C; and C; is invertible.
Part 2: L; is not invertible = C; is not invertible

A matrix K is invertible if and only if there are no non-zero vectors y such that Ky = 0. Since L; is not
invertible, there is at least one non-zero vector y such that L;y = 0.

0
LetY =]y|.
0

Since y # 0, we know that Y # 0.

vii

Then,

-U'D; -U'L; 0][0] [-U;'Ly] [0
C,‘Y = 1 0 0 y| = 0 =10
0 0 1110 0 0
Since there exists a non-zero vector Y such that C;Y = 0, we know that C; is not invertible. O

Therefore, we were able to determine that the following condition is both necessary and sufficient for the
invertibility of Q; and therefore the existence of Z; forall 1 <i < N:
Assumption 3. For 1 <i < N, the matrix L; is invertible.

Note: A method suggested in [2] to make ARDA numerically stable for the same classes of matrices for
which Cyclic Reduction is stable is to take the LU-decomposition of A, and then solve Ax = LUx = b in
two steps: First solving Ly = b, and then solve Ux = y.

This is impossible to do by the ARDA algorithm since L is lower-triangular, violating Assumption 1 U is
upper-triangular, violating Assumption 3.

The original formulation of E; as described in [2] given in the theorem below, which also states the
equivalence of the formulations described in this work and [2].

Theorem 4. For 1 <i < N, the matrix E; = Q;Z;_1 + F;.
Proof.

Base case: i = 1

From Equation (7), we have
E;=E; =F,.

The right hand side evaluates to
QiZin+Fi=QZy+F1=0+F, =F,.
Therefore, the proposition is true fori = 1.

Inductive step

Assume that E; = Q;Z;_| + F; for i = k. We have to prove that Ey| = Qk+1Z; + F+1. From Equation (7),
we have

Eiy1=Fi +CinE; = Fiy1 + Cip1(QiZio1 + F)
= Fir1 + Cin1(QiZiot + QiQ7'F)) = Fis1 + Ci1Qi(Zioy + Q7 'F).

By Equation (6), we have C;iy1Q; = Q;+1, and by Equation (8) we have Z;_; + Ql.‘l F; = Z;. Therefore, we get

Eiv1 = Qin1Zi + Fi.

viii

2. Original Algorithm

The Accelerated Recursive Doubling Algorithm as described in [2] is described below for reference.

2.1 Independent phase

Algorithm 1: Independent Phase of the Non-optimized Accelerated Recursive Doubling Algorithm

1. Assign K, = % block rows of A to each processor.

For each local block row k, compute U -1 and use it to calculate Cy.

Calculate the local prefix product of the Cy products to obtain local Qy’s.
Perform a prefix product of the total products across all processors.

Use the received prefix product to update the local prefixes to obtain global Qy’s.
Invert Oy to determine Q)"

ISANRANE I N

2.2 Dependent phase

Algorithm 2: Dependent Phase of the Non-optimized Accelerated Recursive Doubling Algorithm

—_

Assign K, = % block rows of b to each processor.

For each local block row k, use U,:l to compute Fj.

For each local block row k, compute V; = Q;lF k-

Calculate the local prefix sum of the V}’s to obtain local Z;’s.

Perform a prefix sum of the local totals across all processors.

Use the received prefix sum to update the local prefix sums to obtain global Z;’s.
Use Oy, Z; and F, to calculate Ej.

Use Oy and Ej to calculate S.

On the processor that is assigned the final block row N, use S y to calculate x;, and broadcast x; to
all processors.

10. Use x; to construct X;.

11. Use Sy and X; to determine X;, and thus determine xy.

A A R o

3. Algorithm Setup

3.1 Block row assignment and indexing
The N block rows are distributed between the P distributed processing elements evenly. The number of
block rows assigned to a given processing element r is K, ~ %. Block rows can be indexed in two ways:

e Global index: Represented by i, this is the row index of the block row in A. The global index follows
1-based indexing.

e Local index: Represented by k, this is the index of the block row among the block rows assigned to
the distributed processing element. The local index follows 0-based indexing.

ix

3.2 Shared-memory threading

The highly parallelizable nature of the Accelerated Recursive Doubling algorithm lends to the possibility
of using shared-memory threads in conjunction with the distributed-memory algorithm described in [2].

We consider g shared-memory threads running on every distributed processing element. The K, block rows
assigned to the distributed processing element are sectioned evenly between the threads. The thread ¢ is
responsible for block rows with local indexes ts; < k < te;.

3.3 Registers and Instructions

To increase the efficiency of the algorithm, the strategy chosen was to represent the algorithm in terms of
atomic operations similar to those found in an assembly language. Operations like inverting, multiplying,
and adding matrices become the ‘instructions’, while memory blocks of various sizes are considered to be
‘registers’. Memory is optimized by reducing the number of ‘registers’ required, while computation is
optimized by reducing the number or cost of the ‘instructions’ in the program.

In this implementation, memory is assigned once when the matrix A is input, and freed once the solution to
the right-hand side is output. All memory is contiguous, where consecutive registers have consecutive
addresses in memory.

The memory is laid out with the following registers in order
1. Full block registers (size MK, each): R°, R',R*>, R3, R*
. Rg refers to the k-th block of size M? in R°.

e R refers to the register formed by combining registers R” and R' end-to-end.

Rgl refers to the k-th block of size 2M? in R!, interpreted as a matrix of dimensions M x 2M.

Rgl [0] refers to the O-th block of size M X M in Rgl.

Rg, R}C, R,% are assumed to be initialized with the appropriate L;, D;, and U; respectively, at the
beginning of the independent phase execution.

2. Receive register (size 4M?): R'.
3. Thread registers (size 4M>g each): R, R'!
o R refers to the #-th block of size 4M? in R™.
e R refers to the first block of size 2M in R™.
o R’VO1 refers to the block of size M immediately after R’v%.
4. Vector register (size MK, each): R"°,R"!, R"?.
e R? refers to the register formed by combining registers R*® and R*! end-to-end.

e R is assumed to be initialized with the appropriate b; at the beginning of every dependent
phase execution.

4. Optimizations

In this work, we present a large improvement in time and memory complexity of the algorithm. In order to
do this, we exploit the structure and properties of the intermediate matrices and vectors calculated. We also
present a method to efficiently perform parallel prefixes for the requirements of this algorithm in a
shared-memory paradigm.

4.1 Optimizations in the Independent Phase
4.1.1 C; matrix compression

A C; matrix is determined from L;, D;, and U; matrices and is used as an input to a parallel prefix product
algorithm in order to determine Q;. C; matrices are of size 2M + 1) X (2M + 1), and are of the form

clt ¢z ¢
c,=| 1 0 0. (10)
0 0 1

Therefore, C; can be compressed into a smaller matrix, given by
c;=[clt cP?. (11)

A C! matrix can now be stored in a single cell of a concatenated register like RO

4.1.2 (Q; matrix compression

A Q-type matrix is a matrix produced by the product of several C; matrices. They are of of size
(2M + 1) x (2M + 1), and are of the form

Qll Q12 0
0=|0*" 0% of. (12)
0 0 1

Therefore, a Q; matrix is a Q-type matrix.

These matrices are isomorphic over matrix multiplication to smaller 2M X 2M matrices, which are

constructed as
11 12
Q' = [gzl gzz]- (13)

Theorem 5. If Q4 is a Q-type matrix, and C is a C; matrix, then Qp = CQy is such that the second block
row of the Q' representation of Qp is equal to the first block row of the Q' representation of Q.

X1

Proof.

Op =CQa.

Multiplying on the left on both sides of the above equation with [O 1 O], we get

11 12 11 12
5 % % ol &g
o 7 o]|o3 0% ol=[0 1 o[1 0 ofl@} 0% o
0 0 1 o o 1J[o o0 1

11 Q12 0

rNll 12
21 22 _ ST 0
(03 0% o|=]1 0 o||@} 02 o

(0 0 1
o o7 o]=[er oF o]

From the definition of Q7 in Equation (13) and the above result, we get

11 12 11 12
B 21 22 11 12

B B A A
11 12
0 =% %4l
i Qil QﬁZ
We observe that the second block row of Q7 is the first block row of Q. O
This means that if 9}, Q), ..., Q; were the Q' representations of prefix product of some ordered collection

of C; matrices, the second block row of Q;, would be equal to the first block row of Q" | if i > 1, and
would be equal to the first block row of the identity matrix [I 0] ifi =0.

This further means that when a Q’ is calculated as a result of a prefix operation, and stored among adjacent
prefixes, we can further compress the Q' matrix into a Q" matrix given by

Q" = [Qll le].
In this case, since we only have to calculate the first block row, the time complexity of this multiplication is
only Terxg = Torxg = AC muM? instead of 8CpM>.

However, when a Q’ is calculated by multiplying two other Q”’s and not stored among adjacent prefixes,
we need to calculate and store the full Q’ result. The time complexity of this operation is therefore
Toxg = 8CmuM>.

For every block row 1 <i < N, we define the Q" representation of Q; as Q.

4.1.3 Q7! compression

Because of the isomorphism, we know that even Ql.‘1 matrices are representable as O’ matrices, which are
two block-rows wide.

Xii

As described in [2], only the first block column of the inverse of a Qi‘1 is used. Therefore, we can omit
storing and calculating other block columns of the matrix.

Since the Q’ representation of Q; (represented by Q) are block matrices, we can use the following property
of block matrices

, oM 0] A B 1 _[AT'a+ B(D-cAT'B"IcATYY -AT'B(D - CA7'B)

Q; = [Qzl 02|~ |c b then 0 = -(D-CA™'Bylca! (D-CcA'B)! (14
Assuming that A and D — CA~'B are invertible. This occurs when Ql.11 and Ql.22 - QZ.ZI(Qi“)‘lQl.12 are
invertible.

We define V=D - CA™'Band W = BV~'CA~! for brevity.
We therefore can calculate only the first block column of Ql.‘1 like so:
o |ATta+w)
Qi1 = [_V—ICA—I . (15)

However, this optimization requires the following assumption to be made:
Assumption 4. For 1 <i <N,

4.2 Optimization in the Dependent Phase
4.2.1 Evaluating x;

Theorem 6. For 1 <i <N,

X0 + Zi13

A
xi= Qi 723

Proof. From Theorem 1, we have
Xiy1 = S8iX;
Xi+1
Xi |=(Qi+EDXy1 =(Qi+ QiZi1 + F)Xy = (Qi(I +Zi—y) + FpXy

1
= QI +Zi_ X1 + FiX,

o' 07 0]([x] [Z°]) [FP
=102' 07 off|0o|+|ZB||+] 0
o o 1f\[1 0 0

xiii

Multiplying both sides of the above equation with [O 1 O] on the left, we get

Xitt o' 0 o|([x] [Z°]) [FF
[0 1 0]| x|=[0 1 of||@' @? off{o|+|z"||+] 0
1 o o 1f{t] [o 0
X0 Zl.13_
x=[0? 0P of[lo]+|z3]||+0
1
X z3 L, |xo+28
Lo Q’?Z](0| 2?3]):Q"‘1 P

4.3 Shared-memory parallel prefix

A parallel prefix problem on an array X of length n over a binary, associative operator © is to determine an
array P of length n such that P[k] = X[0] © X[1] © X[2] ©® --- © X[k].

This can be done in shared memory for g threads in the following method, known as the ‘hypercube’
method:

X1v

Algorithm 3: Naive Shared-Memory Parallel Prefix

TT is an array of length g, the number of threads;
TP is an array of length g;
b « 1is an integer;

/* Thread-local Prefix Phase */
for t < 0to g — 1in parallel do
Plts;] « Plts];
fori«—ts;,+1tote;,—1do
| Pli] « Pli- 110 X[il;
end
TT[t] « Plte; — 1];
TP[t] « Plte; — 1];

end

if g > 1 then
/* Cross-thread Prefix Phase */
while (1 < b) < g do
for t < 0to g — 1 in parallel do
i —1t"(1 < b);
if i < g then
if i < r then
TT[t] <« TT[i]oTT|t];
TP[t] « TP[i]OoTT|t];

else
| TT[f] « TT[) o TTil;
end
end
end
b—b+1;
end
/* Thread-local Update Phase */

for t < 1to g —1in parallel do
fori < ts;tote; — 1 do
| Pli] < TP[t-1]06 P[]
end
end

end

Therefore, where T, is the time complexity of the implementation of the ® operator, and My is the number
of block cells in each element of X, the time complexity of Algorithm 3 is

2 (% + logz(CI)) To + 2Ccopy(qMX) g>1

. (16)
nTo + 2Ceopy(Mx) g=1

Tnpp(n’ q) = {

XV

The memory complexity of Algorithm 3 is

anp(l’l, q) = 2CcenMx(n + q). (17)

At every stage, the values in 7T are available somewhere in T P, so we can preclude 7T entirely by
modifying the Cross-thread Prefix Phase.

Algorithm 4: Better Shared-memory Parallel Prefix

TP is an array of length g;
/* Thread-local Prefix Phase as in Algorithm 3 without copying to TT */

cey

/% Better Cross-thread Prefix Phase */
for t < O to I_%J in parallel do
n < 1 < 01is atwo’s complement signed integer;
while n < g do
/* ~ is bitwise complement and & is bitwise AND */
/* — is two’s complement negation */
target — (& (-n)) < 1) +n+ (t & ~ (—n));
if target < g then

source «— (t & (-n)) — 1;

/* For an illustration on the source-target pairings, see Figures 1

and 2 */
T P[target] < T P[source] © T P[target];
end
ne—n<l;
barrier;
end
end
/* Thread-local Update Phase as in Algorithm 3 */

Since this algorithm eliminates the need to copy values to 7’7, this reduces the time complexity to

2% +1o To+C M > 1
Tippin gy = {34+ 10820) To + Comlat) a> 1. (18)
nTe + CeopyMx qg=1
Since the array 7T'T is eliminated, the memory complexity is reduced to
Mppp(n, q) = CeenMx(2n + q). 19)

4.3.1 Optimizations for in-place prefix operations

The prefix scan in the Right-hand side Dependent Phase is a prefix sum of the last column of Ql.‘lF ; for all
1, in order to determine Zl.’ . In this case, X is the array of the last columns of all Qi‘l F;, and the operation ©
is vector addition. Vector addition can be performed in place.

However, the specific requirements of the Right-hand Side Dependent Phase of the Accelerated Recursive
Doubling Algorithm causes Algorithm 3 to have the following drawbacks:

XVi

Figure 1. In-place Shared-Memory Parallel Prefix

Calculating the prefix sum of the first 24 natural numbers using 8 threads using in-place addition

In-place Shared-Memory Parallel Prefix Legend:
Addition Operation:

Precondition: X[0] = 1, X[1] =2, ..., X[23] = 24
Postcondition: X[0] =1, X[1]=1+2, ., X[23]=1+2+ ... +24
Number of shared-memory threads = g =8

Thread-local Prefix Phase Cross-thread Prefix Phase Thread-local Update Phase
/—/% - /—/%
-
X[0] X[1] X2 X[2] X[2] X[2] X[0] X[X[2]
N N e e o]] [
X[3] X[4] X[5] X[5] X[5]
‘S'I':hgeﬁ:le ‘ 44 }—‘ 5.9 }—‘ 615 ‘ ‘ 21
X(6] X(7] Xie) Xl X1
ISE‘:?:ES ‘ 77 }—‘ 815 }—‘ 924 ‘ 5
X(9] X{10] xt1] Xttol]
lslrgfid=312 ‘ 1010 }—»‘ 121 }—»‘ 1233 ‘ 2166 ‘ 78
X112] X(13] X141 (1] X(13] X[14]
ts J;‘;Etlgjﬁ 1313 }— o2 }— 1542 42120 1391 27— 105 ‘ 120
XI15] X(16] X(47] X171 - sl o
IR e ke wow] [orm] [
el Xl X201 X(18] X191 X[20]
ts J:];Tgfm 1919 }_' 2039 }_' 2160 19— 190 39210 ‘ 231
Xi21] X22) X23] — 221 -
ts;rg:?ilgzh 2222 }— 2345 }— 2469 ‘ 22253 45276 ‘ 300 ‘

Local total goes
to global prefix
scan

1. The parallel prefix algorithms in ARDA do not require X to be preserved, while the algorithm
preserves X and P.

2. The algorithm does not take advantage of the fact that the operation © is in-place.

These drawbacks can be mitigated by modifying Algorithm 3 as shown in Figure 1 for in-place operations.
Figure 1 shows the parallel prefix algorithm for in-place addition on the first 24 natural numbers. The
following modifications can be made:

Algorithm 5: Modified Parallel Prefix Algorithm for in-place operations

1. The prefix is calculated in-place, clobbering the original values of X. This saves the memory
required for P.

2. The algorithm removes the need for 7P by using X[te; — 1] to store the value that would
otherwise be stored in 7 P[¢].

XVvii

Since this modification eliminates the need to copy values to T P, this reduces the time complexity further to

22 +logy ()T g >1
Tipp(n. q) = {(i+ log@)To : (20)
nTe g=1
Since the arrays P and T P is eliminated, the memory complexity is reduced to
Mipp(n, q) = nCeen Mx. 2D

Note on threads: The number of concurrent threads running during the Cross-thread Prefix Phase is
reduced to I_%J. This means that thread synchronization is faster, and more memory bandwidth is available
to the prefix operations.

The number of threads performing during the Thread-local Update Phase is reduced to ¢ — 1. Since the
local total available at X[re, | — 1], the g-th thread can be assigned to performing the cross-rank parallel
prefix operation, providing for some computation-communication overlap.

4.3.2 Optimizations for out-of-place prefix operations

The prefix scan in the Right-hand side Independent Phase is a prefix product of C; over all i to determine
Q7. In this case, X is the array of C7, and the operation © is matrix multiplication. Matrix multiplication, as
implemented in BLAS _gemm routines, is performed out of place, unlike vector addition.

To make the algorithm behave like as the operation was in place, we could store the result of the matrix
multiplication in auxiliary memory and then copy the result, but one copy per operation can be expensive
as the size of the matrix increases.

Also, we cannot use X as a substitute for 7P as in the case of the out-of-place prefix operations. The
cross-thread prefix phase requires multiplying Q’-type (single-prime) matrices, which are inferred from
Q" -type (double-prime) or C’-type stored in X.

However, we have two thread registers that can store ¢ matrices of type Q’, and we can use both R°! and
R3* to store Q" type registers. Therefore, we can make the following modifications to the algorithm,
illustrated in Figure 2 and described below.

Algorithm 6: Modified Parallel Prefix Algorithm for out-of-place operations
1. Every cell in the array X and T P has two sections, each with an associated color: white and black.
All X[i] are currently in a white section, and the black sections are all empty.
2. Whenever X[i] or T P[i] is used as an operand, the value in the white section is used.
3. Whenever X[i] or T P[i] is written to, the value is stored in the black section. Then, the colors of the
sections of that cell are flipped.
4. If g = 1, the colors of the every section are flipped once after the Thread-local Prefix Phase.

The copy between X and T P in Figure 2 can be eliminated by referring to X{[te; — 1] for the value at 7 P[]
until 7 P[¢] is written to.

The time complexity of the algorithm is therefore:

(2% +log(@) To g > 1

. 22
nTg g=1 (22

Toapp(n, q) = {

Xviil

Figure 2. Out-of-place Shared-Memory Parallel Prefix

Calculating the prefix sum of the first 12 natural numbers using 4 threads using out-of-place addition

Out-of-place Shared-Memory Parallel Prefix

Precondition: X[0][white] = 1, X[1]white] = 2, ..., X[11][white] = 12
Postcondition: X[0][white] = 1, X[1][white] = 1 + 2, ..., X[11]white] = 1 + 2 + ... + 12
Number of shared-memory threads = q = 4

Legend:

Coloring:

D White: Used as source for

copy / add operations

. Black: Used as target for

copy / add operations

Target for
current operation

Source for
current operation

Source for
next operation
Target for

next operation

Add operations:

Copy operations:

e

Thread-local Prefix Phase

Cross-thread Prefix Phase

N N
r A 4
X[0] X[1] X[2] TP[O] TP[O] TP[0]
Thread 0 .~ 1 2 3
ts=0 |
te=3
X[3] X[4] X[5]
Thread 1 | 4 5 6
ts=3 |
te=6
X[6] X[7] X[8]
Thread 2 T 8 9
ts=6
te=9
X[9] X[10] X[11]
Thread 3 - 10 1" 12
ts=9
te=12

XiX

Thread-local Update Phase

X[0]

X[1]

X[2]

X[5]

5

o

X[8]

24

A

X[11]

n

Local total goes
to cross-rank
prefix scan

The memory complexity is

Moopp =2CcenMx(n + q)- (23)

Note on threads: Like in the in-place case, the number of concurrent threads running during the
Cross-thread Prefix Phase is reduced to L%J. However, the number of threads performing during the
Thread-local Update Phase remains g. But, as in Figure 2, Thread 0 is expected to finish early since
copying is faster than performing operations like matrix multiplications. Thread O can then perform the
cross-rank parallel prefix for some computation-communication overlap.

5. Program

5.1 Independent Phase Part 1

In the first part of the Independent Phase, we have received L;, D;, and U;, and we calculate C l’ . For any
given k, the calculation of C,’c only relies on Ly, Dy, and Uy. Therefore, we can complete this part using an
embarrassingly parallel algorithm as shown in Algorithm 9.

Algorithm 7: Independent Phase Part 1

for t < 0to g — 1in parallel do
for k « ts; tote; — 1 do
Execute each instruction in Table 1;

end
end
Table 1. Instructions for Independent Phase Part 1

Instruction Rl({) R}(R,% R;’; Ri R;{O Complexity
— L; D; Ui — — — —
R} — inv(RL,R) L D; U;! — — — CinyM?

34 2pl -1 11 3
R¥[0] « -R2R. L D; U; (cl'.—) — CoaM
R¥[1] < -RRY L D; ;! (ch.c?)=c — Crnu M?

The time complexity of first part of the independent phase is

N
Tipi(M, N, P,q) = — (M*(Ciny + 2Co1)) . (24)
Pq

XX

5.2 Independent Phase Part 2

In the second part of the Independent Phase, we have C;, and we must calculate Q7. This can be done
efficiently using a parallel prefix scan. The prefix scan has the following parts:

1. Compute the shared-memory prefix product of all C; on a given processing element to obtain ‘local’
o).
2. Compute the distributed-memory prefix product of the ‘local’ Q}’s that represent the local total.

3. Update the ‘local’ Q7" using the result of the previous step to get Q7.

Step 1 is implemented using Algorithm 6. The sections of X[i] are R3*[i] and R°'[{] with the R3* section
initially colored white. The sections of T P[i] are R™°[i] and R"'[i] with the R™ section initially colored
white.

For the particular application of calculating the prefix sum of C; matrices, we can further optimize the
storage and computation time for the parallel prefix algorithm. In the Thread-local Prefix and the
Thread-local Update stages, the resultant matrices are products of collections of C; matrices. This means
we can omit calculating the second block rows of the resultant matrices, and infer the second block rows
from previous matrices. This means that the cost of the prefix operation is not uniform over the prefix
operation.

This means Equation (22) cannot be used to express the time complexity of this step. The time complexity
can be calculated to be:

TQ'XQ’(M) 1Og2(q) + TQ”XQ'(M)Pﬁq q> 1

N
Ti1(M,N, P,q) = Teror(M)— +
021 (q) = Terxor()Pq {O g=1

8& 1+ 8lo > 1
My A1 () q . 25
48 g=1
q

Step 2 is implemented using a distributed-memory library function like MPI_Exscan using a simulated
in-place matrix multiplication operator, which first multiplies two matrix into some auxiliary storage (RBO)
and copies the result into the memory held by an operand. The result is received in the receive register R".
The time complexity of this step is therefore:

Tip22(M, N, P, q) = (M>(8Cru1) + M*(4Ccopy)) 10g,(P) + (7 + 4uM?) log, (P). (26)

The 4M2CCopy term can be eliminated by using a parallel prefix method optimized for out-of-place
operations like in Step 1. However, this was not done in this study because the convenience of using a
library function outweighed the potential gain by the complex optimization.

Step 3 can be written as an embarrassingly parallel algorithm as given in Algorithm 8.
Algorithm 8: Independent Phase Part 2 Step 3
fort — 0Otog—1do
for k < ts, tote; — 1 do
34 01 por.
R < RR";
end

end

XX1

Therefore, the time complexity of this step

N
Tip3(M. N, P,q) = M° (4P—quu1)- 27

The time complexity of the second part of the independent phase is

Tip(M, N, P, q) =M*(4Ceopy + 411) log, P + T log, P+ (28)
N
5-(12Cu1) + 8Cpur 1o > 1
M3 (zacmul log, p +{ Pa! 2Cmu) + 8Cmulog2 g] (29)
ﬁ(gcmul) g=1

5.3 Independent Phase Part 3

This phase can be implemented using an embarrasingly parallel algorithm as follows:
Algorithm 9: Independent Phase Part 1

for t < 0to g — 1 in parallel do
for k <« ts; tote; — 1 do
Execute each instruction in Table 1;
end
end

In the following table, inv(R“, R®) is a function that inverts the matrix stored in R*, in place, using R? as
a workspace.

Table 2. Instructions for Independent Phase Part 3

Instruction Rg R}(R;{O R;cl Complexity
R — R} (0] — — A — CeopyM?
RO — inv(RO,R) — — A7l — CinyM?
R} — R . [O]R? CA™! — A7l — CrnuM?
R — R (1] CA™! — Al D CeopyM?
R « R - RRY [1] CA™! — A7l 4 CrnuM?
R — inv(R!, R} CA™! — A7 v CinyM?
R} — —RIR! cA™! -v-lcat ATt v CrnuM?
R — -RY' [1IR} cA™! -v-lcat A w CrnuM?
R — RV 4+ CA™! -v-icA™! A7 I+W CaaaM
RO « RIOR!! Ala+wy -v-lcat! Al I+W Cou M?

XX1i

The final results in Rg and R}{ form the first column of the inverse of Q;, as described in the Optimizations
in the Independent Phase section.

The time complexity of the third part of the independent phase is

N
Tip3(M, N, P,q) = (M>(2Ciny + 5Cpu1) + M*(2Ccopy) + M(cadd»P—q. (30)

5.4 Dependent Phase Part 1

In the first part of the Dependent Phase, we have b;, U i‘l , and the first column of Ql.‘1 and we calculate z;.
For any given k, the calculation of z; only relies on b;, U,;l, and the first column of Q,;l. Therefore, we can
implement this part using an embarrassingly parallel algorithm as shown in Algorithm 10.

Algorithm 10: Dependent Phase Part 1

for t < 0to g — 1in parallel do
for k « ts; tote; — 1 do
Execute each instruction in Table 3;

end
end
Table 3. Instructions for Dependent Phase Part 1
Instruction RXO RZl R]Vf Complexity
_ b; _ _ _
RZ — RRO _ F? CrnuM?

Z 0 pv2
RZ[0] « RORY

1

Q7' F)P(Q; ' F)P) = FP Cru M

1

(Q;'FyB,—) F3 Crnut M?
(0

Z 1 pv2
RZ[1] < RIR!

The time complexity of this part of the algorithm is

N
Tap1(N, M, P, q) = P—q(Mz(scmuo). 31)

5.5 Dependent Phase Part 2

In the second part of the Dependent Phase, we have z;, and we must calculate Z;. This can be done using a
parallel prefix scan. The prefix scan has the following parts:

1. Compute the shared-memory prefix sum of all z; to obtain ‘local’ Z;.

2. Compute the distributed-memory prefix sum of the ‘local’ Z;’s that represent the local totals.

XX1il

3. Update the ‘local’ Z; using the result of the previous step to get Z!.

4. On the processing element that has Qy, calculate x| = —(Qllvl)‘lF v and broadcast it to all processing
elements.

Step 1 is implemented using Algorithm 5. The register R is represented by X.

Substituting T, = M(2Cp44), 1 = % in Equation (20), we get

M (24 +10g,(9)) 2Caaa) g > 1
Tap21(M, N, P,q) = (NPq ’) : : (32
M (52Caa0)) qg=1
Step 2 is implemented using a distributed-memory library function like MPI_Exscan using a vector
addition operator, where the result is received in Ri%. The time complexity of this step is therefore:
Tap2o(M, N, P, q) = M(2Cyaq) log,(P) + (7 + 2uM) log, (P). (33)
Step 3 can be implemented as an embarrassingly parallel algorithm as given in Algorithm 11.
Algorithm 11: Dependent Phase Part 2 Step 3
fort — Otog—1do
for k « ts; tote; — 1 do
RY — RZ +R;
end
end
Therefore, the time complexity of this step is
N
Typ23(M,N,P,q) = M P—qCadd . (34)
Step 4 can be implemented as in Algorithm 12.
Algorithm 12: Dependent Phase Part 2 Step 4
if N is on current processing element then
RI[0]'" « inv(RM[K, — 1], R'[0]?);
0 1111 pv2
R} « —R"[0] Ry s
end
Broadcast R'), receiving in R'Y;
The time complexity of this step is
Tap2a(M, N, P,q) = CinyM’ + CnaM? + (x + M) log, P. (35)
The total time complexity of the second part of the dependent phase is therefore
N
5-(5Cadq) + 2Cyqq lo > 1
Tap(M, N, P,q) = 10g,(P) + M| 2(Caaa + 1) 10g,(P) + gq(d) + 2Caaal0g2(9)) 4 (36)
ﬁ(3cadd) q=1

XX1v

5.6 Dependent Phase Part 3

In the third part of the Dependent Phase, we have Z/, x1, and Q’’, and we must calculate x;. For any given
k, the calculation of x; only relies on Z}, x1, and Q)" . Therefore, we can implement this part using an
embarrassingly parallel algorithm as shown in Algorithm 13.

Algorithm 13: Dependent Phase Part 3

for t < Oto g — 1 in parallel do
for k — ts; tote; — 1 do
Execute each instruction in Table 4;

end
end
Table 4. Instructions for Dependent Phase Part 3

Instruction Rf Rzz Complexity
— Z! FP —

T T
Rl — RZ + [xl o] Z + [)ﬂ 0] FP CagaM

T
R* —RZ+RY} | RE, Z+ [xl 0] X; 2CmuM?
The time complexity of this part of the algorithm is
N o
Tan(M.N.P.) = 5 (M?2Crmu) + MCoaa). (37)

6. Time Complexity Analysis and Comparison

6.1 Naive implementation

The naive implementation is considered to use M X M matrices to represent L, D and U matrices, 2M X 2M
matrices to represent C and Q matrices, while using 2M X 1 matrices to represent F and Z matrices.

To determine the time complexity of the dependent phase of the naive implementation, we list the
time-complexities of the naive implementations of each step, and then sum the complexities.

XXV

6.1.1 Independent phase

Step Complexity

Invert U’s E(CinyM?)

Calculate C’s using L, D, and U-! %(2Cmu1M3)

Prefix C’s locally to find local Q’s %(SCmulM 3)

Cross-rank prefix scan on Q (T + 4uM? + 8CruM?>)log,(P)
Update Q’s locally to find global Q’s %(SCmulM 3)

Invert Q’s %(ScinvM3)

The total time complexity for the independent phase is

N
T,i(M,N,P) = M° (F(9Cmv + 18Cmu1)) + 8Crul logz(P)) + O(M? log, P) (38)

6.1.2 Dependent Phase

Step Complexity

Calculate F’s B(CruM?)

Calculate V’s %(zcmulM %)

Prefix V’s locally to find local Z’s 2(2CaaaM)

Cross-rank prefix scan on Z (T + 2uM + 2Cy9aM) log, P
Update Z’s locally to find global Z’s %(ZCaddM)

Calculate E’s using Z, Q and F FQCuuM? +2CaqaM)
Calculate x; CinM? + CouM?
Broadcast x; (t +uM)log, P

Calculate x; using xo, Q, and E ECrnu(4M? + 2M)

The total time complexity for the dependent phase is

N MN
Tya(M, N, P) = M*Cip, + M (F(9Cmul) t cmul) o (T + Mlog, P) (39)

XXV1

6.2 Optimized implementation
6.2.1 Independent phase

Summing up the time complexities given in Equations (24), (29), and (30), we get:

X 19Cu +8Cmulog, g q > 1]+

N
T, M,N,P,q) =M>|8Cnu log, P+ — (3Cipy) +
oi(q) (mul 108> Pq(inv) {%lscmm g=1

N N
M? (P—q(zccopy) + (4Coopy + 41) log, P) + MP—qCadd

X 19Cu +8Cmulogy g q > 1]+

N
=M |8Cpui l0g, P+ — (3Ciny) +
(mul 10€» Pq inv {%lscmul g=1

M*N
@(Py +M210g2P).

Setting g = 1, we get
2

N M?N
Toi(M,N, P) = M° (F(ISCmul 1 3Cim) + 8Cmut log, P) n @(+ M2log, P)

6.2.2 Dependent phase
Summing up the time complexities given in Equations (31), (36), and (31), we get:

N
Tog(M,N, P, q) :M3Cinv + M2 (P_q(scmul) + Cmul) +

3 410 > 1
27log, P + M((ZCadd +3u)log, P + 2Caad {qu 2949 4 1)
P q=

N MN
:M3CiIlV + M? (P—(SCmul) + Cmul) + 0 (P_ + M log, P + M log, q)
q q

Setting g = 1, we get

N MN
T,o(M,N, P) = M?Cipy, + M (F(SCmul) + cmul) +0 (T + Mlog, P)

6.3 Comparison

(40)

(41)

(42)

(43)

(44)

(45)

In order to compare the two algorithms, we assume that the number of shared-memory threads is ¢ = 1,
and Cjpy = Cppy = C. For the two problem parameters M and N, we choose the dominantly growing term

that grows along with that parameter.

We then measure the asymptotic speedup defined as the limit

Dominant term of the naive implementation

lim . — —.
parameter—co Dominant term of the optimized implementation

XXVii

(46)

6.3.1 Independent Phase

Parameter Dominant term (Optimized) Dominant term (Naive) Asymptotic Speedup
3N 3 3N 3 27N+8Plog, P _ 3
N 18CM*Y 27CM L 3

6.3.2 Dependent Phase

Parameter Dominant term (Optimized) Dominant term (Naive) Asymptotic Speedup
M cM? CcM? 1

2N 2N 9
N S5CM=3 oOCM > z

7. Memory Complexity Analysis and Comparison

7.1 Naive implementation

The memory complexity of the naive implementation was estimated by summing up the sizes of the
allocations relevant to the phase of the algorithm over all processing elements in the implementation of the
ARDA algorithm used in [2].

For the independent phase, the memory complexity was found to be M,,;(M, N, P) > (14M2N + 8M?*P)Ceqy1.
For the dependent phase, the memory complexity was found to be M,,;(M, N, P) > (6 MN + 4MP)Cec.

7.2 Optimized implementation
The memory complexity of the optimized implementation can be measured simply by summing up the
sizes of the registers relevant to the phase of the algorithm.

For the independent phase, the memory complexity was found to be
Myi(M, N, P,q) = (SM*N + 8M?Pq + 4M?P)C¢. For the dependent phase, the memory complexity was
found to be M,;(M,N, P,q) = BMN + 3MPq)Ccer-

7.3 Comparison

In order to compare the two algorithms, we assume that the number of shared-memory threads is g = 1.
For the two problem parameters M, N, we choose the dominantly growing term that grows along with that
parameter.

XXViil

We then measure the asymptotic memory savings defined as the limit

I Dominant term of the optimized implementation
im

47
parameter—co Dominant term of the naive implementation “47)
7.3.1 Independent Phase
Parameter Dominant term (Optimized) Dominant term (Naive) Asymptotic Memory Savings
M M?(5N + 12P) M?(14N + 8P) ML = 2(N>>P)
N N(GM?) N(14M?) 2
7.3.2 Dependent Phase
Parameter Dominant term (Optimized) Dominant term (Naive) Asymptotic Memory Savings
N
M MQ@N +3P) M(6N + 4P) -
pH4
N NGN) N(6M) >
8. Shared-memory threading speedups
We determine the effect of adding shared-memory threading to the asymptotic time-complexity of the
Algorithm.
8.1 Independent phase
The asymptotic time complexity of the independent phase is
M3N .
Toi(M. N, P.q) = ©| — = + M"log,(Pq) |. (48)
q

Therefore, the asymptotic speedup with increasing g is

Speedup = Complexity for num threads = 1 [@ + M? log,(P)]
= : — = /
Complexity for num threads = ¢ MP_ql\’ + M3 log,(Pq)

_ @[q(%i +10gz(P))]'

5 + qlogy(Pq)

XX1X

For small block-row granularities %, we can plug in % ~ 0 in the above equation to obtain an asymptotic

%HogzP - %+qlog2(Pq)
7 ~ ~
P

speedup of ®(1). For large block-row granularities, we can plug in ~ 1 to obtain an

P

asymptotic speedup of O(g).

8.2 Dependent phase

The asymptotic time complexity of the dependent phase is

M*N
Toa(M,N,P,q) = © (M3 +

+M logz(Pq)) . (49)

Therefore, the asymptotic speedup with increasing ¢ is

Speed Complexity for num threads = 1 o M3 + @ + Mlog, P
peedup = - =
Complexity for num threads = ¢ M3 + N;quN + M1og,(Pq)

6 q(@ + M? +log2P)
MN 1 g(M? + log,(Pg))

For small block-cell granularities @, we can plug in @ ~ (in the above equation to obtain an
asymptotic speedup of ®(1). For large block-cell granularities, we can plug in
MV M2 +log, P MV 1 g(M2+log,(P . .
p PO o 2 + - 02D . 1 to obtain an asymptotic speedup of O(g).
P P

9. Experiments and Results

The optimized algorithm described was implemented in C, using BLAS and LAPACK calls for matrix and
vector operations. The solutions generated by the algorithm were measured for accuracy by the error
function E(x) = log, % where x* is the solution given by the algorithm. The smaller the value of

E(x*), the more accurate the solution is.

The results were as follows:

Table 5. Mean error for M =2, N =20 Table 6. Mean error for M =3, N =9
P Mean E(x) P Mean E(x)
6 -22.177 6 -21.518
8 —24.389 8 -22.116
10 -21.317 10 -21.232
12 -21.318 12 -25.232

The optimized implementation works correctly, with the magnitude of the error = 2EC") < 1077 for the
above problem sizes.

XXX

However, for larger problem sizes, we get

Table 7. Mean error for M =3, N =22

P Mean E(x)
6 9.020
8 9.740
10 9.740
12 9.087

The error continues to rise rapidly with increases in M and N, and E(x) approaches 225 for N = 20,
M = 80. The rapidly increasing error poses a significant challenge to the practical use of this algorithm.
The possible causes have been identified as

1. The blockwise inverting algorithm used in Optimization 2 to efficiently calculate only the first block
column

2. The limited precision to which we can store large numbers resulting from prefix products of large
numbers of matrices.

New techniques need to be developed to keep the error within practical limits.

10. Conclusions

We presented alternative mathematical formulations of intermediary matrices in the algorithm. We also
made the assumptions made by the algorithm explicit. This helped us determine that a particular algorithm
cited in [2] will not run.

We have shown methods by which the Accelerated Recursive Doubling Algorithm can be optimized, and
shown how the speedup and memory savings is affected by the value of the problem parameters M, N and
the new parameter g. We can achieve up to % speedup on the independent phase and up to % speedup on the
dependent phase. Since the dependent phase is expected to run 10>—~10* times, the overall speedup is close
to 3.

We implemented the optimized algorithm and verified that runs with acceptable errors for small matrices.
We also noted the numerical instability of the algorithm. Resolving this numerical stability is the direction
of our research into this algorithm.

References

[1] S. K. Seal, K. P. Perumalla, and S. P. Hirshman, “Revisiting Parallel Cyclic Reduction and Parallel
Prefix-based Algorithms for Block Tridiagonal Systems of Equations,” Journal of Parallel and
Distributed Computing, vol. 73, pp. 273-280, 2013.

[2] S. K. Seal, “An accelerated recursive doubling algorithm for block tridiagonal systems,” in 2014 IEEE
28th International Parallel and Distributed Processing Symposium, 2014, pp. 1019-1028.

XXX1

	LIST OF FIGURES
	Introduction
	Li, Di, and Ui matrices
	xi and bi vectors
	Xi vectors and Bi matrices
	Si matrices
	Ci and Fi matrices
	Qi matrices
	Ei matrices
	Zi matrices

	Original Algorithm
	Independent phase
	Dependent phase

	Algorithm Setup
	Block row assignment and indexing
	Shared-memory threading
	Registers and Instructions

	Optimizations
	Optimizations in the Independent Phase
	Ci matrix compression
	Qi matrix compression
	Q-1 compression

	Optimization in the Dependent Phase
	Evaluating xi

	Shared-memory parallel prefix
	Optimizations for in-place prefix operations
	Optimizations for out-of-place prefix operations

	Program
	Independent Phase Part 1
	Independent Phase Part 2
	Independent Phase Part 3
	Dependent Phase Part 1
	Dependent Phase Part 2
	Dependent Phase Part 3

	Time Complexity Analysis and Comparison
	Naïve implementation
	Independent phase
	Dependent Phase

	Optimized implementation
	Independent phase
	Dependent phase

	Comparison
	Independent Phase
	Dependent Phase

	Memory Complexity Analysis and Comparison
	Naïve implementation
	Optimized implementation
	Comparison
	Independent Phase
	Dependent Phase

	Shared-memory threading speedups
	Independent phase
	Dependent phase

	Experiments and Results
	Conclusions

